Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
Semin Respir Crit Care Med ; 43(3): 335-345, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-2004821

Реферат

Computer simulation offers a fresh approach to traditional medical research that is particularly well suited to investigating issues related to mechanical ventilation. Patients receiving mechanical ventilation are routinely monitored in great detail, providing extensive high-quality data-streams for model design and configuration. Models based on such data can incorporate very complex system dynamics that can be validated against patient responses for use as investigational surrogates. Crucially, simulation offers the potential to "look inside" the patient, allowing unimpeded access to all variables of interest. In contrast to trials on both animal models and human patients, in silico models are completely configurable and reproducible; for example, different ventilator settings can be applied to an identical virtual patient, or the same settings applied to different patients, to understand their mode of action and quantitatively compare their effectiveness. Here, we review progress on the mathematical modeling and computer simulation of human anatomy, physiology, and pathophysiology in the context of mechanical ventilation, with an emphasis on the clinical applications of this approach in various disease states. We present new results highlighting the link between model complexity and predictive capability, using data on the responses of individual patients with acute respiratory distress syndrome to changes in multiple ventilator settings. The current limitations and potential of in silico modeling are discussed from a clinical perspective, and future challenges and research directions highlighted.


Тема - темы
Respiration, Artificial , Respiratory Distress Syndrome , Computer Simulation , Humans , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Ventilators, Mechanical
2.
Respir Res ; 23(1): 101, 2022 Apr 26.
Статья в английский | MEDLINE | ID: covidwho-1813343

Реферат

BACKGROUND: Airway pressure release ventilation (APRV) is widely available on mechanical ventilators and has been proposed as an early intervention to prevent lung injury or as a rescue therapy in the management of refractory hypoxemia. Driving pressure ([Formula: see text]) has been identified in numerous studies as a key indicator of ventilator-induced-lung-injury that needs to be carefully controlled. [Formula: see text] delivered by the ventilator in APRV is not directly measurable in dynamic conditions, and there is no "gold standard" method for its estimation. METHODS: We used a computational simulator matched to data from 90 patients with acute respiratory distress syndrome (ARDS) to evaluate the accuracy of three "at-the-bedside" methods for estimating ventilator [Formula: see text] during APRV. RESULTS: Levels of [Formula: see text] delivered by the ventilator in APRV were generally within safe limits, but in some cases exceeded levels specified by protective ventilation strategies. A formula based on estimating the intrinsic positive end expiratory pressure present at the end of the APRV release provided the most accurate estimates of [Formula: see text]. A second formula based on assuming that expiratory flow, volume and pressure decay mono-exponentially, and a third method that requires temporarily switching to volume-controlled ventilation, also provided accurate estimates of true [Formula: see text]. CONCLUSIONS: Levels of [Formula: see text] delivered by the ventilator during APRV can potentially exceed levels specified by standard protective ventilation strategies, highlighting the need for careful monitoring. Our results show that [Formula: see text] delivered by the ventilator during APRV can be accurately estimated at the bedside using simple formulae that are based on readily available measurements.


Тема - темы
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Computer Simulation , Continuous Positive Airway Pressure/methods , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury/prevention & control , Ventilators, Mechanical
3.
Crit Care Explor ; 2(9): e0202, 2020 Sep.
Статья в английский | MEDLINE | ID: covidwho-1795075

Реферат

OBJECTIVES: Patients with coronavirus disease 2019 acute respiratory distress syndrome appear to present with at least two distinct phenotypes: severe hypoxemia with relatively well-preserved lung compliance and lung gas volumes (type 1) and a more conventional acute respiratory distress syndrome phenotype, displaying the typical characteristics of the "baby lung" (type 2). We aimed to test plausible hypotheses regarding the pathophysiologic mechanisms underlying coronavirus disease 2019 acute respiratory distress syndrome and to evaluate the resulting implications for ventilatory management. DESIGN: We adapted a high-fidelity computational simulator, previously validated in several studies of acute respiratory distress syndrome, to: 1) develop quantitative insights into the key pathophysiologic differences between the coronavirus disease 2019 acute respiratory distress syndrome and the conventional acute respiratory distress syndrome and 2) assess the impact of different positive end-expiratory pressure, Fio2, and tidal volume settings. SETTING: Interdisciplinary Collaboration in Systems Medicine Research Network. SUBJECTS: The simulator was calibrated to represent coronavirus disease 2019 acute respiratory distress syndrome patients with both normal and elevated body mass indices undergoing invasive mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: An acute respiratory distress syndrome model implementing disruption of hypoxic pulmonary vasoconstriction and vasodilation leading to hyperperfusion of collapsed lung regions failed to replicate clinical data on type 1 coronavirus disease 2019 acute respiratory distress syndrome patients. Adding mechanisms to reflect disruption of alveolar gas-exchange due to the effects of pneumonitis and heightened vascular resistance due to the emergence of microthrombi produced levels of ventilation perfusion mismatch and hypoxemia consistent with data from type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, while preserving close-to-normal lung compliance and gas volumes. Atypical responses to positive end-expiratory pressure increments between 5 and 15 cm H2O were observed for this type 1 coronavirus disease 2019 acute respiratory distress syndrome model across a range of measures: increasing positive end-expiratory pressure resulted in reduced lung compliance and no improvement in oxygenation, whereas mechanical power, driving pressure, and plateau pressure all increased. Fio2 settings based on acute respiratory distress syndrome network protocols at different positive end-expiratory pressure levels were insufficient to achieve adequate oxygenation. Incrementing tidal volumes from 5 to 10 mL/kg produced similar increases in multiple indicators of ventilator-induced lung injury in the type 1 coronavirus disease 2019 acute respiratory distress syndrome model to those seen in a conventional acute respiratory distress syndrome model. CONCLUSIONS: Our model suggests that use of standard positive end-expiratory pressure/Fio2 tables, higher positive end-expiratory pressure strategies, and higher tidal volumes may all be potentially deleterious in type 1 coronavirus disease 2019 acute respiratory distress syndrome patients, and that a highly personalized approach to treatment is advisable.

4.
Br J Anaesth ; 128(6): 1052-1058, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-1748195

Реферат

BACKGROUND: Optimal respiratory support in early COVID-19 pneumonia is controversial and remains unclear. Using computational modelling, we examined whether lung injury might be exacerbated in early COVID-19 by assessing the impact of conventional oxygen therapy (COT), high-flow nasal oxygen therapy (HFNOT), continuous positive airway pressure (CPAP), and noninvasive ventilation (NIV). METHODS: Using an established multi-compartmental cardiopulmonary simulator, we first modelled COT at a fixed FiO2 (0.6) with elevated respiratory effort for 30 min in 120 spontaneously breathing patients, before initiating HFNOT, CPAP, or NIV. Respiratory effort was then reduced progressively over 30-min intervals. Oxygenation, respiratory effort, and lung stress/strain were quantified. Lung-protective mechanical ventilation was also simulated in the same cohort. RESULTS: HFNOT, CPAP, and NIV improved oxygenation compared with conventional therapy, but also initially increased total lung stress and strain. Improved oxygenation with CPAP reduced respiratory effort but lung stress/strain remained elevated for CPAP >5 cm H2O. With reduced respiratory effort, HFNOT maintained better oxygenation and reduced total lung stress, with no increase in total lung strain. Compared with 10 cm H2O PEEP, 4 cm H2O PEEP in NIV reduced total lung stress, but high total lung strain persisted even with less respiratory effort. Lung-protective mechanical ventilation improved oxygenation while minimising lung injury. CONCLUSIONS: The failure of noninvasive ventilatory support to reduce respiratory effort may exacerbate pulmonary injury in patients with early COVID-19 pneumonia. HFNOT reduces lung strain and achieves similar oxygenation to CPAP/NIV. Invasive mechanical ventilation may be less injurious than noninvasive support in patients with high respiratory effort.


Тема - темы
COVID-19 , Lung Injury , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Computer Simulation , Humans , Oxygen , Respiratory Insufficiency/therapy
5.
Ann Intensive Care ; 11(1): 109, 2021 Jul 13.
Статья в английский | MEDLINE | ID: covidwho-1308104

Реферат

BACKGROUND: There is on-going controversy regarding the potential for increased respiratory effort to generate patient self-inflicted lung injury (P-SILI) in spontaneously breathing patients with COVID-19 acute hypoxaemic respiratory failure. However, direct clinical evidence linking increased inspiratory effort to lung injury is scarce. We adapted a computational simulator of cardiopulmonary pathophysiology to quantify the mechanical forces that could lead to P-SILI at different levels of respiratory effort. In accordance with recent data, the simulator parameters were manually adjusted to generate a population of 10 patients that recapitulate clinical features exhibited by certain COVID-19 patients, i.e., severe hypoxaemia combined with relatively well-preserved lung mechanics, being treated with supplemental oxygen. RESULTS: Simulations were conducted at tidal volumes (VT) and respiratory rates (RR) of 7 ml/kg and 14 breaths/min (representing normal respiratory effort) and at VT/RR of 7/20, 7/30, 10/14, 10/20 and 10/30 ml/kg / breaths/min. While oxygenation improved with higher respiratory efforts, significant increases in multiple indicators of the potential for lung injury were observed at all higher VT/RR combinations tested. Pleural pressure swing increased from 12.0 ± 0.3 cmH2O at baseline to 33.8 ± 0.4 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 46.2 ± 0.5 cmH2O at 10 ml/kg/30 breaths/min. Transpulmonary pressure swing increased from 4.7 ± 0.1 cmH2O at baseline to 17.9 ± 0.3 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 24.2 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. Total lung strain increased from 0.29 ± 0.006 at baseline to 0.65 ± 0.016 at 10 ml/kg/30 breaths/min. Mechanical power increased from 1.6 ± 0.1 J/min at baseline to 12.9 ± 0.2 J/min at VT/RR of 7 ml/kg/30 breaths/min, and to 24.9 ± 0.3 J/min at 10 ml/kg/30 breaths/min. Driving pressure increased from 7.7 ± 0.2 cmH2O at baseline to 19.6 ± 0.2 cmH2O at VT/RR of 7 ml/kg/30 breaths/min, and to 26.9 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. CONCLUSIONS: Our results suggest that the forces generated by increased inspiratory effort commonly seen in COVID-19 acute hypoxaemic respiratory failure are comparable with those that have been associated with ventilator-induced lung injury during mechanical ventilation. Respiratory efforts in these patients should be carefully monitored and controlled to minimise the risk of lung injury.

6.
Agric Syst ; 193: 103168, 2021 Oct.
Статья в английский | MEDLINE | ID: covidwho-1283845

Реферат

Context: The COVID-19 pandemic has been affecting health and economies across the world, although the nature of direct and indirect effects on Asian agrifood systems and food security has not yet been well understood. Objectives: This paper assesses the initial responses of major farming and food systems to COVID-19 in 25 Asian countries, and considers the implications for resilience, food and nutrition security and recovery policies by the governments. Methods: A conceptual systems model was specified including key pathways linking the direct and indirect effects of COVID-19 to the resilience and performance of the four principal Asian farming and food systems, viz, lowland rice based; irrigated wheat based; hill mixed; and dryland mixed systems. Based on this framework, a systematic survey of 2504 key informants (4% policy makers, 6% researchers or University staff, 6% extension workers, 65% farmers, and 19% others) in 20 Asian countries was conducted and the results assessed and analysed. Results and conclusion: The principal Asian farming and food systems were moderately resilient to COVID-19, reinforced by government policies in many countries that prioritized food availability and affordability. Rural livelihoods and food security were affected primarily because of disruptions to local labour markets (especially for off-farm work), farm produce markets (notably for perishable foods) and input supply chains (i.e., seeds and fertilisers). The overall effects on system performance were most severe in the irrigated wheat based system and least severe in the hill mixed system, associated in the latter case with greater resilience and diversification and less dependence on external inputs and long market chains. Farming and food systems' resilience and sustainability are critical considerations for recovery policies and programmes, especially in relation to economic performance that initially recovered more slowly than productivity, natural resources status and social capital. Overall, the resilience of Asian farming and food systems was strong because of inherent systems characteristics reinforced by public policies that prioritized staple food production and distribution as well as complementary welfare programmes. With the substantial risks to plant- and animal-sourced food supplies from future zoonoses and the institutional vulnerabilities revealed by COVID-19, efforts to improve resilience should be central to recovery programmes. Significance: This study was the first Asia-wide systems assessment of the effects of COVID-19 on agriculture and food systems, differentiating the effects of the pandemic across the four principal regional farming and food systems in the region.

Критерии поиска